11:52 am - Wednesday November 4, 2015

How Do Monster Black Holes Form? New Find May Provide ‘Missing Link’

207 Viewed Gautam Comments Off on How Do Monster Black Holes Form? New Find May Provide ‘Missing Link’
black hole

Black holes are some of the strangest objects in the universe, and they typically fall into one of two size extremes: “small” ones that are dozens of times more massive than the sun and other “supermassive” black holes that are billions of times larger than our nearest star. But until now, astronomers had not seen good evidence of anything in between.

A recent discovery of an intermediate-mass black hole in the nearby galaxy Messier 82 (M82) offers the best evidence yet that a class of medium-size black holes exists. The finding may provide a missing link that could explain how supermassive black holes — which are found at the centers of most, if not all, galaxies — come to be, researchers say.

“We know that supermassive black holes exist at the centers of almost every massive galaxy, but we don’t know how [they] form,” said Dheeraj Pasham, an astronomy graduate student at the University of Maryland, College Park, who led the research. A black hole is a region of space where the gravitational field is so strong that neither matter nor light can escape. Though it can’t be seen directly, astronomers can infer a black hole’s existence by the way its gravity tugs on nearby matter, and from the radiation it spews out as bits of material falling into the black hole rub against one another, producing friction.

Astronomers have detected stellar-mass black holes, which are 10 to 100 times the mass of the sun, and supermassive black holes, which are hundreds of thousands to billions of solar masses. But the intermediate-mass variety has proved very difficult to detect, causing some to doubt their existence.

The recently identified medium-size specimen has a mass about 400 times that of the sun (give or take 100), according to the study published Sunday (Aug. 17) in the journal Nature. Scientists had hypothesized that such intermediate black holes existed, but this is the first time that one has been measured so precisely, the researchers said.Astronomers know how stellar-mass black holes form: A massive star collapses under its own gravity. But such a process would seem unable to explain how much larger black holes arise, because they can only gobble material up to a rate known as the Eddington limit, and the universe isn’t old enough for them to have grown from stellar mass to supermassive, said Cole Miller, an astronomer also at the University of Maryland.

“If you feed matter to the black hole too fast, it produces so much radiation that it blows away the matter that’s trying to [accumulate],” Miller told Live Science.

Click here to submit your review.


Submit your review
* Required Field

Don't miss the stories followIndiaVision News and Information and let's be smart!
Loading...
0/5 - 0
You need login to vote.
Filed in
images

First female winner for Fields maths medal

140624093246-large

New experiment to test the nature of our universe

Related posts